
CSR - Client Side Rendering

You visit a website.

The server sends basic files (HTML, CSS, JS) to your
browser.

Your browser downloads these files. You might see
a blank page or a loading symbol at this time.

Once the HTML is downloaded, the static parts of
the webpage start to appear.

The browser downloads the JavaScript,
which then asks the server for additional
data.

This data is used to fill in the dynamic parts
of the webpage.

The JavaScript updates the webpage with
this data, without needing to reload the page.

How Client Side Rendering (CSR) works?

loading..

CDN CDN CDN

loading

loading

User Request The server sends Initial
HTML response to the
browser.

The browser downloads JS,
CSS, and other files. It then
executes the JS to load the
client-side framework

The browser runs the
JavaScript and then load
the content by making API
calls to the server. At this
point, the page becomes
viewable and interactive

CDN

loading..

SSR - Server Side Rendering

CDN CDN CDN

User Request The server sends ready
to render HTML
response to the browser.
The browser renders the
HTML and its viewable
but it not interactive

The browser downloads
JS, CSS, and other files. It
then executes the JS to
load the client-side
framework, which makes
the page interactive .

Static /
Dynamic SSR

How Server Side Rendering (SSR) works?

You visit a website.

The server prepares the full HTML for the page by
running server-side scripts.

This prepared HTML is sent to your browser.

Your browser downloads and displays the HTML,
making the site visible to you.

Your browser then downloads and runs the
JavaScript, which makes the page interactive.

In Server-Side Rendering (SSR), the server
does all the heavy lifting. It fetches dynamic
content, turns it into HTML, and sends it to
your browser.

This can use up a lot of the server’s memory
and processing power. As a result, pages
might load slower compared to static sites
that don’t have any dynamic content to
render.

Build Process

CodeCodeCode

Content

Data

SSG
CDN CDN

User Request
The browser renders
HTML page and its
viewable. The browser
download JS and other
files. JS will make site
more interactable.

SSG - Static Site Generation

How Static Site Generation (SSG) works?

Browser Rendering: When a user visits your
site, their browser downloads the static files
from the server or CDN. The HTML is
displayed, and the user sees the webpage.

Interactivity: Any interaction on the pages
(like form submissions or dynamic content
loading) is managed by JavaScript running in
the user’s browser. This JavaScript can make
requests to APIs to fetch or submit data as
needed.

Build Process: In the build process, your static
site generator uses your content and templates
to create HTML pages.

Deployment: The created HTML, CSS, and
JavaScript files are then sent to a web server or
Content Delivery Network (CDN). Because these
files are static, they can be served to users very
quickly.

ISR - Incremental Static Regeneration

Build Process

CodeCodeCode

Content

Data

ISR
CDN CDN

User Request The browser renders the
HTML page (v1) and it
becomes viewable. The
browser downloads JS
and other files. JS then
makes the site more
interactive.

CDN

The browser renders the
HTML page (v2) and it
becomes viewable. The
browser downloads JS
and other files. JS then
makes the site more
interactive

 V2..Vn

How Incremental Static Regeneration (ISR) works?

Build Process: During the build process, ISR
generates a subset of pages. The remaining pages
are not built immediately but are prepared to be
generated on-demand.

Deployment: The generated HTML, CSS, and
JavaScript files are deployed to a web server or
Content Delivery Network (CDN). As these files are
static, they can be delivered to users rapidly,
enhancing the site’s performance. Dynamic
content is served via web servers, similar to SSR.

On Initial Request: When a user first requests a
page that wasn’t pre-generated at build time, the
page is generated on-the-fly, similar to SSR. This
freshly rendered page (let’s call it version-1) is
then cached and served to subsequent users,
mimicking the behavior of SSG. This ensures that
future visitors can access the page instantly.

On Subsequent Requests: For any following
requests, the server delivers the cached (version-
1) page to the user. Concurrently, the JavaScript
framework checks if the page is due for
regeneration. If it is, the framework regenerates
the page on the server-side. This newly generated
page (let’s call it version-2) then replaces the old
page in the cache.

 V1

 V1 V2..VnCDN

The browser
renders HTML page
and its viewable.
The browser
download JS and
other files. JS will
make site more
interactable.

Pre-built Pages Generate Dynamic
Content

 Generate Dynamic
Content

